技术贴:亚马逊防刷单原理,这下知道自己是怎么挂的吧?

卖家之家 卖家之家 6天前 1 13 7999
摘要:揭秘亚马逊防刷单原理!


一般反作弊主要业务流程:



看不懂?那就对了,我们继续往下看,在了解这个模型之前,我们需要狂补一些专业的知识!


我们常用的跨境电商作弊方式:


机器作弊:机器刷量、任务分发、流量劫持

人为作弊:QQ群/水军、直接人工、诱导


电商常见作弊手段:


刷单,刷信誉,刷好评,职业差评师


判断广告作弊涉及的点击类型分类:


1、  按照是否找商品找服务为目的;

2、  是否按照是否恶意,有无真实转化为依据。

(CPC基于点击计费的模式、CPA基于成交的点击进行收费)

常见电商平台点击行为分为四大分类:


无效点击(没有形成转化的意愿,仅仅浏览);

恶意点击(必须识别出来);

转化点击(真实意愿点击);

误点(不是以找商品为目的,例如内部人员点击,需要识别出来)。


点击人群划分:


误点:员工、广告主自己、竞品销售中介、爬虫;

恶意点击:同行、同行朋友、联盟站点、机器。


反作弊策略应对框架:


数据层:鼠标轨迹行为、指纹数据、案例库、行为数据;

特征层:离散指标、连续指标;

行为识别层:点击识别模型、异常监测模型、流量识别模型、关系图模型、人群识别模型;

策略应对层:规则。




看完以上的一些专业名词的恶补,我们再来看看亚马逊如何监控刷单:



三层监控指标体系,提前预警:


运营指标监控:投诉率、转化率、撞线速率/频率、消耗速率、通过率;

规则监控指标:拦截率、准确率、覆盖率;

异常监控指标:IP维度、Cookie维度、计费名维度、广告维度、设备维度、鼠标轨迹维度


分类监控、分级响应:


1、  针对监控情况、采用四级响应机制;

2、  红色:非常严重,需要自动化采取短期策略应对,例如临时黑名单机制

3、  橙色:较为严重,短信举报,要求4h内完成分析和短平快策略压制,后续进一步处理


机器学习在反作弊应用几个案例:


如关联规则、决策树模型:策略挖掘—规则自动提取


确定建模问题:自动发现规则、辅助策略设计;

应用:挖出的规则,上线到离线反作弊系统;

评估指标:支持度、置信度、覆盖率、拦截率   


有一种算法叫做“千人千面算法”,首先来看下作弊的几个方面:


1、同IP


也就是说你朋友都不能买你的东西,因为你们两个人早晚是会在一起碰面的,两个人碰面就是IP碰面,所以,买你宝贝的那个人,你们两个人的IP永远不能相见,也就是说你们两个人永远不能相见!


2、性别


假如你的淘宝店铺卖的是连衣裙,老是有男买家隔三差五的在你家买这件宝贝,你觉着正常,男朋友帮买怎么了?我用男朋友的号买怎么了?可是算法认为你是在作弊!你是在刷宝贝!


3、行为


这种行为指的就是假如你在刷宝贝,你没有具体的流程,每一个帮你刷流量的人都是搜索关键词,找到你家宝贝,点击收藏,加入购物车,然后下单,你都觉着不可能,更别说算法了!


4、年龄


你家淘宝店铺卖的是丝袜,行,你男朋友帮你买,可是你找的人都有40岁往上的,谁家40岁的男人帮媳妇在网上买丝袜?最好就是你找18-30岁之间的女性刷宝贝是最正常不过的了!


5、能力


支付宝都是实名认证的,对我们的好多都了如执掌,你卖意大利名牌古弛,你却老是找一些大学生帮你刷单,这就肯定是有问题的,学生能力有限,没有工作,买这么名贵的皮具肯定也是有些问题的!


使用关联规则检测刷单作弊行为


最近发现我们平台上的个别内容提供商使用一些违规的手段,对自己所属的收费内容进行刷单作弊。从其他渠道以很优惠的价格购买代金券,在平台消费自己的项目内容,从而获得结算分成与成本的金额差价。


因为需要对该问题进一步重视和监控,我也在考虑一些检测方法,其中一个就是本文介绍的基于数据挖掘中的关联规则(Association Rules)的算法进行尝试分析。对于关联规则的算法原理在此就不赘述。


家喻户晓的一个利用关联规则的案例是沃尔玛啤酒尿布的案例,目的是发现客户购物篮中经常被同时购买的商品。本例与啤酒尿布案例类似。主要因为内容商使用低价购买的客户账号购买自己的商品,但基于以下分析,本案例中可能会产生较强的关联效应:


(1)对同一批内容商品进行购买,会节约作弊成本。

(2)由于客户帐号有限,必将会出现一个客户账号购买很多内容项目的现象。


而与沃尔玛的案例不同的是,沃尔玛的案例是探索的正向积极的事件,本例是要发现的是负向消极的事件。沃尔玛的案例中要求事件的支持度(support)要较高,即事件能够经常发生才能有意义,置信度(confidence)只要适当即可,不要求过高;而本例因为是需要稽查异常,所以不能要求支持度高,相反置信度一定要比较高,即当某时间发生以后,另一关联的时间也发生的概率要很高才行。


通过初步的设想,提取出某一天的客户订单数据进行建模,模型如下所示:

关联规则模型设置如下:



因为使用的是事务型数据格式(按交易明细进行记录的,特点是一个客户标识可以有多条数据),所以需要勾选 use transaction format这个选项。此外因为本例需要对全部的CASE进行关联分析,因此没有对数据进行分区。



上面已经介绍了本例要求低支持度和高置信度的设置。因为本例只需要发现任意两个内容项目的关联即可,所以只将最大前项数(maximum number of antecedents)为1。


最后得出的模型结果如下:



从结果模型上可以看到,两内容项目的关联程度可以高达百分之百,即用户购买了某一个内容项目,那这个用户100%会购买另一个内容项目,可见它们俩之间很可能存在猫腻,而这个规则也正是我想要寻找的。


尽管这些规则的支持度都很低,但刷量作弊属于异常事件,不能要求高支持度。


将模型导出文本,并将这些内容项目进行整理,通过对这些项目的购买清单进行观察分析,发现产生在这些内容项目的订单95%以上存在很强的作弊嫌疑,由此验证,此关联模型对此类作弊行为有较强的检查能力。



现阶段只对该模型可行性进行尝试,尚未考虑模型的部署,本文只介绍到此,希望能对朋友们有一定的启发。

使用反作弊算法检测刷单作弊行为


以Amazon的Review算法为例:


1.Verified Purchase。直评已死,这个时候再去刷直评非但没有意义,反而可能会出现如上图群聊中出现的“上好评排名会跌”的情况。


所以要刷就刷VP吧。还记得年初的封号风波吗,这些卖家大多数是因为刷单被姐夫“秋后算账”;船长在之前的分享中有向大家提到一个刷单建议,模仿真实购买行为。


亚马逊希望所有的评论都是诚实的,而在他的监控中,如果我们能做到“仿真”,也就能避开惩罚了。具体如何模仿真实购买行为地刷单,我们根据下文的影响因素一一分析。


2.留评频率与间隔时间。留评频率越高,间隔时间越短,权重就越高。


如果一款产品不断地来好评,这就意味着该产品受欢迎。也就是说,你需要根据自己的产品特性来规划规划刷单的频率,留评的频率,留评间隔的时间。当然,时间和频率的把控同时也需要考虑到产品的销售周期,比如你不能在站点的冬季持续刷泳装的单并留评论,是吧。


既然说到时间和频率,大家在刷单刷评是需要注意,一般情况下,在买家真实购买行为中,账号成交量平均一个月最多10-20单,留评数量不超过10%,在越来越苛刻的评论政策之下,不超过5%是最好的。


也就是说,大家在选择刷单资源,或者自己组建刷单团队时,除了需要规划好在listing上留评的时间与频率,也需要根据成交情况、留评时间与频率筛选合适的买家账号。


3.字数、内容与比例,也就是评论内容的质量。刷单需求越大,刷单者的胃口也被养得很大,卖家们经常会花了很多钱却被随便一个“good”或者“wonderful”的五星敷衍了事,在现在新的算法之下,这类属于低价值的评论是对权重排名没有帮助的。


Review都有专员审核,亚马逊希望review能够真实反映产品的情况,给买家参考,避免产生不良购物体验,客观丰富完整的review内容是能够提高权重的。


现在刷评论的一个标准,要让买家当真,也要让姐夫当真。站在真实买家(产品购买者、使用者)的角度去客观评价这个产品,甚至不全是五星好评;根据客服提供的依据,还需要有有趣且幽默的评论内容并且数量要在最新10个reviews中占一定比例的,比如每10个评论(包括好评、中评和差评)至少1-2个有趣的评论,以此类推。


如果评论的内容不知道怎么下手,可以通过查询竞争对手的review,挑选靠前、内容较丰富并且“helpful”数量较多的VP评论模仿,切记是模仿不是照搬照抄。至于有趣的内容,最好搭配相关的、有趣的图片或视频,特别是童装、玩具这些婴儿的产品,可以利用的素材就更多了。


4.Review中的“helpful”数量。这是个陷阱!点击“helpful”(俗称“点赞”)也是需要买家账号,但如果你不小心用了一些“质量差”的买家账号刷点击,那就完蛋了。


首先,使用质量好的买家账号。上文中船长也有介绍到,真实买家账号成交量平均一个月最多10-20单,留评数量不超过10%,另外还需要注意的是账号使用年限和使用习惯,一般来说,越老的账号越好,但拒绝老僵尸号;并且,买家账号也要防关联,关联条件与卖家账号相同。


接着,用这些质量好的买家账号模仿真实的买家点赞行为。从登录买家账号到点赞,一般是需要经过这些步骤的:


①搜索:通过亚马逊前台键入你的产品关键词,或者通过你的产品对应品类去搜索,也可以通过品牌名搜索(小卖家不建议直接搜索品牌名)。


②对比:一页页去找你的listing,查找过程中随意点击几个别人家的listings浏览几秒钟,翻翻评价和Q&A,并在两三个产品页面停留时间稍久一些。


③点赞:一番操作后找到你的产品,到评论区后也不要马上找到目标review点赞,可以浏览首页或前几页的评论,翻开折叠的回复查看,点开图片或者视频,甚至离开这个产品页面之后再回来浏览、点赞。


5.Review原星级分数,即原来Review星级的分数。这个影响因素已经没法去改变,但不代表原先分数低现在就没法提高,从其他因素着手去优化即可。


6.详情页面被点击次数、买家离开该详情页面次数、买家又再次返回该详情页面比率。其实就是要按照买家正常购买的顺序逻辑,换位思考,你在网购商品的时候是怎样操作的,就按照类似的顺序逻辑去刷单就是了。


除了review算法的改变,亚马逊也更新了“评论服务条款”,进一步保护review的真实性,同时也制定了惩罚政策,简单讲就是,操控评论,后果很严重。


这时候再回去看我们第一张的流程图,大家就能大致明白原理了。


内容素材来源于:

1.http://www.cnblogs.com/jiasenhuo/p/9678584.html

2.https://www.sohu.com/a/123944478_576946

3.http://datakung.com/?p=171

4.https://blog.csdn.net/u013185349/article/details/85158659

本文已被这些标签收录: 亚马逊刷单 亚马逊review 亚马逊
卖家之家倡导尊重保护知识产权。未经本站授权,任何人不得复制、转载、或以其他方式使用本网站的内容。鉴于第三方在平台发布信息数量庞大,如发现本站文章或其它信息可能存在侵权行为,请将身份、版权等证明文件以及相关质询发送邮件至complain#mjzj.com(#换为@),我们将及时沟通与处理

发表评论 未登录

说点什么...

家友热评

最新评论

热门文章

亚马逊公布FBA新规!这类卖家可能要错过旺季促销!
亚马逊公布FBA新规!这类卖家可能要错过旺季促销!
美国海关新规:商品需附带电子数据,否则将被拒绝入境!
美国海关新规:商品需附带电子数据,否则将被拒绝入境!
跨境早报|美国暂缓关税上调!亚马逊再投4亿美元打假?
Etsy卖家必修课!如何利用店铺统计数据(shop stats)提升转化?

家友评论

一般还是先考虑站内的,站外的效果具体怎样都需要积累经验
旺季引流:各种形式的广告预算该如何分配? - 文章
就等这活动了  好好干吧
备战黑五有哪些技巧?来自国外顶级卖家的7个建议 - 文章
这个需要好好衡量下了
亚马逊公布FBA新规!这类卖家可能要错过旺季促销! - 文章
这个时间点,该备货的差不都也都备足了。
跨境早报|亚马逊日本站加大review监管力度?发往日本的货物可能因台风延迟! - 文章
这不算骗子
#一吐為快:陳艾綾 - 聊天吹水交流
找服务商去搞死他  封他店铺 
Marlene1988 - 恶意跟卖曝光台
微信285531474
找德国测评中介或者测评人,靠谱的来 - 聊天吹水交流
Jenny_Munich
找德国测评中介或者测评人,靠谱的来 - 聊天吹水交流
回复 雨舫:get.
备战黑五有哪些技巧?来自国外顶级卖家的7个建议 - 文章
回复 雨舫:上面还有一篇具体的
跨境早报|美国暂缓关税上调!亚马逊再投4亿美元打假? - 文章
霖霖的新微信号:PppB000
1710504544@qq.com - 西班牙 - 测评黑名单
德玛西亚
渔夫 - 美国 - 测评黑名单
这个人已经骗了一群人了 就是因为被骗的不敢集体报案 为了保全自身 他才能继续猖狂 才会有更多人被骗 https://mjzj.com/ce-ping-bao-guang-tai/babdd45092e4.html#comment-132870
西班牙测评 - 西班牙 - 测评黑名单
回复 Demaciaa: 妈妈 我想买火化戴宗霖! 买!买大块的!两块够不够! 够了 谢谢妈妈!妈妈真好!
西班牙测评 - 西班牙 - 测评黑名单
特此证明是骗子。
Cawin - 美国 - 测评黑名单
回复 王大喵:为啥要告诉她,坑自己人
Nikerose19@yahoo.com - 美国 - 测评黑名单
这个啥情况唉?是骗子?
何文婧 - 美国 - 测评黑名单
Robert Gedhill https://www.facebook.com/profile.php?id=100036883010127 Lorenchen https://www.amazon.com/gp/profile/amzn1.account.AHSGBE6BOIPOX2SLHU3LM6MOCXEA/ 用的新fb和Amazon账号,还好查pp查到了。要求下单后一半,评后反一半。没找他测评,不然可能要被骗了
quinn223@mail.ru - 美国 - 测评黑名单
死骗子,我也遇到了,订单取消了,还让我返款,不返款给差评,投诉亚马逊
Faithgracelove1618@outlook.com - 美国 - 测评黑名单
黑我的请拿出你的证据,用事实说话。
Ant - 美国 - 测评黑名单

跨境活动会议

2019年第三届跨境电商科技大会—提速跨境,智变未来
易仓&紫鸟两大跨境IT第三次携手合作,联合举办《第三届跨境电商科技大会》,并邀请国内外行业大咖和领袖,从listing、测评、留评、流量、爆款等多维度现场分享,一起探讨未来科技玩法!
深圳宝安登喜路国际大酒店 2019-11-09 09:00 至 2019-11-09 17:30 参加活动
2019先进制造链创新发展大会
2018年东莞进出口总额突破1.3万亿元!海关总署发布的“外贸百强城市名单”中,东莞连续两年位居第三。全市跨境电商进出口达370.1亿元,同比增长133%,总量位居全国第一。在粤港澳大湾区机遇背景下,东莞跨境电商综合试验区建设全面推进,东莞跨境电商正驶入发展快车道。
广东东莞常平会展中心 10月12日9:00-18:30 参加活动
论道钱塘江 2019中国跨境电商卖家大会
进入2019年第三季度,跨境电商人都会更深刻的感受到:流量成本越来越高,蓝海时间越来越短,卖家竞争越来越激烈……而本次大会的目的,不仅仅是基于探讨以上问题。这次大会也是华东华南跨境电商卖家的亲密和深入交流。
杭州 萧山 长安宴国际大酒店 2019年10月25日 参加活动
2019ebay旺季卖家大会-宁波站
必创汇&ebay 中国 ,共同打造《ebay旺季卖家大会》,2019年政策扶持、2020年新政发布、平台选品指导、头部卖家从0到1历程分享,结合宁波地区的产业带优势,寻找全球市场开拓的新出路,10月30日我们在宁波与您不见不散!
宁波市海曙区阳光豪生大酒店 3F 豪生厅 2019年10月30日 参加活动